Probing local electromechanical effects in highly conductive electrolytes.
نویسندگان
چکیده
The functionality of a variety of materials and devices is strongly coupled with electromechanical effects which can be used to characterize their functionality. Of high interest is the investigation of these electromechanical effects on the nanoscale which can be achieved by using scanning probe microscopy. Here, an electrical bias is applied locally to the scanning probe tip, and the mechanical sample response is detected. In some applications with electromechanical phenomena, such as energy storage or for biological samples, a liquid environment is required to provide full functionality and sample stability. However, electromechanical sample characterization has mostly been applied in air or under vacuum due to the difficulties of applying local electric fields in a conductive environment. Here, we present a detailed study of piezoresponse force microscopy of ferroelectric samples in liquid environments as a model system for electromechanical effects in general. The ionic strength of the liquid is varied, and possibilities and limitations of the technique are explored. Numerical simulations are used to explain the observed phenomena and used to suggest strategies to work in liquid environments with high ionic strength.
منابع مشابه
Probing contact-mode characteristics of silicon nanowire electromechanical systems with embedded piezoresistive transducers
This article reports on a new method of monitoring nanoscale contacts in switches based on nanoelectromechanical systems, where the contact-mode switching characteristics can be recorded with the sensitive embedded piezoresistive (PZR) strain transducers. The devices are manufactured using state-of-the-art wafer-scale silicon-on-insulator technology featuring suspended silicon cantilevers and b...
متن کاملNonlinear phenomena in multiferroic nanocapacitors: joule heating and electromechanical effects.
We demonstrate an approach for probing nonlinear electromechanical responses in BiFeO(3) thin film nanocapacitors using half-harmonic band excitation piezoresponse force microscopy (PFM). Nonlinear PFM images of nanocapacitor arrays show clearly visible clusters of capacitors associated with variations of local leakage current through the BiFeO(3) film. Strain spectroscopy measurements and fini...
متن کاملTowards local electromechanical probing of cellular and biomolecular systems in a liquid environment.
Electromechanical coupling is ubiquitous in biological systems, with examples ranging from simple piezoelectricity in calcified and connective tissues to voltage-gated ion channels, energy storage in mitochondria, and electromechanical activity in cardiac myocytes and outer hair cell stereocilia. Piezoresponse force microscopy (PFM) originally emerged as a technique to study electromechanical p...
متن کاملNanometer-scale mapping of irreversible electrochemical nucleation processes on solid Li-ion electrolytes
Electrochemical processes associated with changes in structure, connectivity or composition typically proceed via new phase nucleation with subsequent growth of nuclei. Understanding and controlling reactions requires the elucidation and control of nucleation mechanisms. However, factors controlling nucleation kinetics, including the interplay between local mechanical conditions, microstructure...
متن کاملElectrical Impedance Spectroscopy for Electro-Mechanical Characterization of Conductive Fabrics
When we use a conductive fabric as a pressure sensor, it is necessary to quantitatively understand its electromechanical property related with the applied pressure. We investigated electromechanical properties of three different conductive fabrics using the electrical impedance spectroscopy (EIS). We found that their electrical impedance spectra depend not only on the electrical properties of t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- ACS nano
دوره 6 11 شماره
صفحات -
تاریخ انتشار 2012